The aim of the present study is to develop procedure for formation of stable and well-characterized carbon-based hybrid nanoparticles. The composite particles are formed through a subsequent layer-by-layer adsorption of oppositely charged polyelectrolytes on ellipsoidal core (β-FeOOH). In order to produce multifunctional nanoparticles, very low concentration of carbon dots were impregnated into the polymer shell. In the present study, the electro-optic method is applied for first time for characterization of the electrical properties and hydrodynamic size of the carbon-based composite particles. The overcompensation of the surface charge of the particles and re-stabilization of the system after each deposition step were investigated by using electric light scattering and microelectrophoresis.

Acknowledgment

The investigation is performed under the umbrella of COST Action CA 15107 „Multi-Functional Nano-Carbon Composite Materials Network (MultiComp)“. 